
Java™ Portlet Technology
Compatibility Kit User’s Guide

For Technology Licensees

Version1.0

October 2003

Copyright © 2002 Sun
Microsystems, Inc. All
rights reserved.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, Solaris, Java, the Java Compatible logo, JavaOS, JavaSoft,
JavaStation, the Java Coffee Cup logo, Java Compatibility Kit, JDK, and HotJava are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and
other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of the Sun
and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, Solaris, Java, le Java Compatible logo, JavaOS, JavaSoft,
JavaStation, le Java Coffee Cup logo, Java Compatibility Kit, JDK, et HotJava sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays. UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et
licenciée exclusivement par X/Open Company Ltd.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par
quelque moyen que ce soit sans l’autorisation écrite préalable de Sun et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

1

Contents

Preface . 5

Who Should Use This Book . 5
Before You Read This Book . 6
How This Book Is Organized . 6
Related Books . 7
Typographic Conventions Used in This Book . 7

Chapter 1 Introduction . 9
Compatibility Testing . 9

Why Compatibility Testing is Important . 9
TCK Compatibility Rules . 10
TCK Overview . 10
Java Community Process (JCP) Program and Compatibility Testing . 11

The Portlet TCK . 11
Portlet TCK Specifications and Requirements . 11
Portlet TCK Components . 12
JavaTest Harness . 12
TCK Compatibility Test Suite . 13
Exclude Lists . 13

Portlet TCK—Getting Started . 14

Chapter 2 Procedure for Portlet 1.0 Certification . 17
Certification Overview . 17
Compatibility Requirements . 17

Definitions . 17
Rules for Portlet Products . 19

Portlet Test Appeals Process . 21

2 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Process Used to Manage Challenges to Portlet 1.0 Tests: . 21
Portlet TCK Test Appeals Steps . 22

Reference Implementation for Portlet 1.0 . 24
Specifications for Portlet 1.0 . 24
Libraries for Portlet 1.0 . 24

Chapter 3 Requirements . 25
Hardware Requirements . 25
Software Requirements . 25

Chapter 4 Installation . 27
Obtaining the Software . 27
Installing the Software . 27

Chapter 5 Setup and Confirguration for Vendor Implementation . 29
Allowed Modifications . 29
Configure Your Test Environment . 29

Overview . 30
Configuring the Test Environment . 31

Where to Go Next? . 37

Chapter 6 Setup and Configuration for Reference Implementation 39
Allowed Modifications . 39
Configure Your Test Environment . 39

Overview . 40
Configuring the Test Environment . 40

Chapter 7 Running the Portlet TCK . 43
Starting JavaTest . 43

Chapter 8 Reporting and Logging . 47
Using the JavaTest GUI to Configure and Save a Report . 47

Chapter 9 Debugging Test Problems . 49
Using tsant . 49

Running Tests without JavaTest . 50
Cleaning and Rebuilding Test Areas . 51
Listing the Contents of dist/classes Directories . 51

Test Tree . 52
Folder Information . 52

3

Test Information . 53
Report Files . 53
Configuration Failures . 54
Test Manager Properties . 54
Test Suite Errors . 54
How Tests are Executed . 55

How Tests are Selected for a Test Run . 55

Chapter 10 Troubleshooting . 57
Common CTS Problems and Resolutions . 57
Support . 58

Appendix A Frequently Asked Questions . 59

4 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

5

Preface

This guide describes how to install, configure, and run the Technology
Compatibility Kit (TCK) that provides tests for the Java™ Portlet 1.0 technology.

The Portlet TCK is designed as a portable, configurable automated test suite for
verifying the compliance of a licensee’s implementation of the Portlet 1.0
Specification (hereafter referred to as a licensee implementation). The Portlet TCK
uses the JavaTest™ harness version 3.1.3 to run the test suite.

Refer to the Java Partner Engineering Web site (https://javapartner.sun.com)
for answers to frequently asked questions and send questions you may have to
your Java Partner Engineering contact. For more information about joining the Java
Partner program, please see http://www.sun.com/software/jpe.

Who Should Use This Book
This guide is for licensees of Sun Microsystems’ and IBM’s Portlet 1.0 technology to
assist them in running the test suite that verifies compliance of their
implementation of the Portlet 1.0 Specification.

NOTE All references to specific Web URLs are given for your convenience
in locating the resources quickly. These references are always
subject to changes that are in many cases beyond the control of the
authors of this guide.

6 JavaTM Portlet Technology Compatibility Kit User’s Guide • October 2003

Before You Read This Book
Before reading this guide, you should familiarize yourself with the Java
programming language and the JSR 168 Specification. A good resource for the Java
Programming language is the Sun Microsystems, Inc. Web site, located at:

http://java.sun.com

The Portlet TCK 1.0 is based on the JSR 168 Specification. Links to the specification
and other product information can be found on the Web at:

http://www.jcp.org/en/jsr/detail?id=168

Sun Microsystems recommends that before you run the tests in the Portlet TCK,
read and familiarize with the JSR168 Specification and the JavaTest User’s Guide,
which describes the main JavaTest harness. The JavaTest User’s Guide is located at:

TS_HOME/docs/javatest/javatest.pdf

in the Portlet TCK 1.0 distribution.

How This Book Is Organized
If you are installing and using the Portlet TCK for the first time, Sun Microsystems
recommends that you read chapters 1, 2, and 3 completely for the necessary
background information, and then perform the steps outlined in chapters 4, 5 or 6,
and 7, while referring to chapters 8, 9, 10, and the appendix as necessary.

Chapter 1, “Introduction,” gives an overview of the principles that apply generally
to all Technology Compatibility Kits (TCKs) and describes the Portlet TCK. It also
includes a listing of the basic steps needed to get up and running with the Portlet
TCK.

Chapter 2, “Procedure for Portlet 1.0 Certification,” describes the conformance
testing procedure and testing requirements.

Chapter 3, “Requirements,” lists the hardware and software requirements that
must be met before the Portlet Compatibility Test Suite can be run.

Chapter 4, “Installation,” explains how to install Portlet TCK on machines that run
the Solaris, Linux, and Windows XP/2000 operating systems.

Chapter 5, “Setup and Confirguration for Vendor Implementation,” explains
how to configure your test environment and the Portlet Compatibility Test Suite,
including any special setup instructions that need to be completed prior to
deploying and/or running selected tests.

Preface 7

Chapter 6, “Setup and Configuration for Reference Implementation,” explains
how to setup and run test suite on the reference implementation.

Chapter 7, “Running the Portlet TCK,” describes how to start and use the Portlet
TCK.

Chapter 8, “Reporting and Logging,” explains how status and error information is
logged and reported.

Chapter 9, “Debugging Test Problems,” describes several approaches for dealing
with tests that fail to execute properly.

Chapter 10, “Troubleshooting,” lists common problems that could be encountered
during test execution and explains how to resolve these problems.

Appendix A, “Frequently Asked Questions,” provides answers to frequently
asked questions.

Related Books
• JavaTest User’s Guide and JavaTest online help(located in the doc/javatest

directory in the Portlet TCK distribution)

• The Java™ Architecture for Portlet Specification, Version 1.0
(http://java.sun.com/portlet/index.html)

• The Java Programming Language
(http://java.sun.com/docs/books/javaprog/)

• The Java Language Specification Second Edition
(http://java.sun.com/docs/books/jls/)

• The Java Virtual Machine Specification 2nd Edition, Java 2 Platform
(http://java.sun.com/docs/books/vmspec/)

Typographic Conventions Used in This Book
The following table describes the typographic conventions used in this book.

8 JavaTM Portlet Technology Compatibility Kit User’s Guide • October 2003

Table 1 Typographic Conventions Used in This Book

Typeface or Symbol Meaning Example

Courier AaBbCc123 The names of commands, files, and
directories, variable and method
names; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

Bold AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

ABCDE Command-line placeholder:

replace with a real name or value

Example 1: To delete a file, type rm
filename

Example 2: TS_HOME

Italics AaBbCc123 Book titles, new words or terms, or
words to be emphasized or set apart
from the other text

Read Chapter 4 in User’s Guide. These
are called class options.

You must be root to do this.

\ Indicates that a long line has been
broken in two, typically to improve
legibility, particularly in code

jjava classname \

[options for classname]

NOTE The top-most Portlet TCK installation directory is referred to as
TS_HOME throughout the Portlet TCK documentation.

9

Chapter 1

Introduction

This chapter provides an overview of the principles that apply generally to all
Technology Compatibility Kits (TCKs) and describes the Java™ Portlet Technolgoy
Compatibility Kit (Portlet TCK). It also includes a listing of what is needed to get
up and running with the Portlet TCK.

Compatibility Testing
Compatibility testing differs from traditional product testing in a number of ways.
The focus of compatibility testing is to test those features and areas of an
implementation that are likely to differ across other implementations, such as those
features that:

• Rely on hardware or operating system-specific behavior

• Are difficult to port

• Mask or abstract hardware or operating system behavior

Compatibility test development for a given feature relies on a complete
specification and reference implementation for that feature. Compatibility testing
is not primarily concerned with robustness, performance, or ease of use.

Why Compatibility Testing is Important
Java™ platform compatibility is important to different groups involved with Java
technologies for different reasons:

• Compatibility testing is the means by which Sun Microsystems ensures that the
Java platform does not become fragmented as it is ported to different operating
systems and hardware environments.

Compatibility Testing

10 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

• Compatibility testing benefits developers working in the Java programming
language, allowing them to write applications once and then to deploy them
across heterogeneous computing environments without porting.

• Compatibility testing allows application users to obtain applications from
disparate sources and deploy them with confidence.

• Compatibility testing benefits Java platform implementors by ensuring a level
playing field for all Java platform ports.

TCK Compatibility Rules
Compatibility criteria for all technology implementations are embodied in the TCK
Compatibility Rules that apply to a specified technology. Each TCK tests for
adherence to these Rules as described in Chapter 2, “Procedure for Portlet 1.0
Certification.”

TCK Overview
A TCK is a set of tools and tests used to verify that a licensee’s implementation of
Sun Microsystems’s and IBM’s Portlet 1.0 technology conforms to the applicable
specification. All tests in the TCK are based on the written specifications for the
Java platform. A TCK tests compatibility of a licensee’s implementation of Sun
Microsystems and IBM Portlet 1.0 technology to the applicable specification of the
technology. Compatibility testing is a means of ensuring correctness,
completeness, and consistency across all implementations developed by Sun
Microsystems and IBM Portlet 1.0 technology licensees.

The set of tests included with each TCK is called the “test suite.” All tests in the
Portlet TCK’s test suite are self-checking and do not require tester interaction. Most
tests return either a Pass or Fail status. For a given licensee’s implementation to be
certified, all of the required tests must pass.

The definition of required tests will change over time. Before your final
certification test pass, be sure to download the latest Exclude List for the TCK you
are using from the Java Partner Web site (https://javapartner.sun.com). For
more information about joining the Java Partner program, please see
http://www.sun.com/software/jpe.

The Portlet TCK

Chapter 1 Introduction 11

Java Community Process (JCP) Program and
Compatibility Testing
The Java Community Process(SM) (JCP(SM)) program is the formalization of the
open process that Sun Microsystems, Inc. has been using since 1995 to develop and
revise Java technology specifications in cooperation with the international Java
community. The JCP program specifies that the following three major components
must be included as deliverables in a final Java technology release under the
direction of the responsible Expert Group:

• Technology Specification

• Reference Implementation

• Technology Compatibility Kit (TCK)

For further information on the JCP program see this URL: http://www.jcp.org.

The Portlet TCK
The Portlet TCK 1.0 is designed as a portable, configurable, automated test suite for
verifying the compliance of a licensee’s implementation with Sun Microsystems
and IBM’s Portlet 1.0 technology.

Portlet TCK Specifications and Requirements
This section lists the applicable requirements and specifications.

• Specification Requirements – Software requirements for a Portlet
implementation are described in detail in the Java™ Portlet Specification.
Links to the JSR 168 specification and other product information can be found
at http://www.jcp.org/en/jsr/detail?id=168.

• Java™ Portlet Specification Version – The Portlet TCK 1.0 is based on the JSR
168 Specification, Version 1.0.

• JavaTest™ Harness – The Portlet TCK requires version 3.1.3 of the JavaTest
harness.

• Reference Implementation – The designated Reference Implementation for
conformance testing of implementations based upon JSR 168 Specification 1.0
is Apache Open Source Project, Pluto 1.0.

The Portlet TCK

12 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Portlet TCK Components
The Portlet TCK 1.0 includes the following components:

• JavaTest harness and supplemental java classes, which are used to select and
run TCK tests and generate reports that show the results of test runs

• TCK interview component, which is used to configure a test run

• The test suite, which is a collection of tests and supplemental files that provide
data for the automatic running of tests through the JavaTest harness

• An exclude list, which provides a list of tests that your implementation is not
required to pass

• TCK documentation, including JavaTest readme file, Release Notes, JavaTest
User's Guide, and Portlet TCK User's Guide

JavaTest Harness
The JavaTest harness version 3.1.3 is a set of tools designed to run and manage test
suites on different Java platforms. The JavaTest harness can be described as both a
Java application and a set of compatibility testing tools. It can run tests on different
kinds of Java platforms and it allows the results to be browsed on-line within the
JavaTest GUI, or off-line in the HTML reports that the JavaTest harness generates.

The JavaTest harness includes the applications and tools that are used for test
execution and test suite management. It supports the following features:

• Sequencing of tests, allowing them to be loaded and executed automatically

• Graphic user interface (GUI) for ease of use

• Automated reporting capability to minimize manual errors

• Failure analysis

• Test result auditing and auditable test specification framework

• Distributed testing environment support

• Environment configuration

To run tests using the JavaTest harness, you specify which tests in the test suite to
run, how to run them, and where to put the results as described in Chapter 6,
“Setup and Configuration for Reference Implementation.”

The Portlet TCK

Chapter 1 Introduction 13

TCK Compatibility Test Suite
The test suite is the collection of tests used by the JavaTest harness to test a
particular technology implementation. In this case, it is the collection of tests used
by the Portlet TCK 1.0 to test an implementation of the JSR 168 specification. The
tests are designed to verify that a licensee’s implementation of the technology
complies with the appropriate specification. The individual tests correspond to
assertions of the specification.

The descriptions of tests that make up the TCK compatibility test suite are
precompiled into a special file. When the JavaTest is started it loads the file and
extracts information about the tests. Depending on how a test run is configured
some tests can be filtered out.

The Portlet TCK 1.0 test suite comprises two test categories:

• A signature test that checks that all of the public APIs are supported in the
Portlet, Version 1.0 implementation that is being tested.

• API/SPEC tests for the public APIs and language elements that are defined by
the JSR 168 Specification.

Exclude Lists
Each version of a TCK includes an Exclude List contained in a .jtx file. This is a
list of test file URLs that identify tests which do not have to be run for the specific
version of the TCK being used. Whenever tests are run, the JavaTest harness
automatically excludes any test on the Exclude List from being executed.

A licensee is not required to pass any test—or even run any test—on the Exclude
List.

The Exclude List file included in the Portlet TCK is located in the TS_HOME/bin
directory. For example, the Exclude List for version 1.0 of the Portlet TCK is
TS_HOME/bin/ts.jtx.

NOTE The exclude list that is shipped with the bundle reflects the state of
the release at the time of the release. Since that time, additional tests
may have been added to the Exclude List. All updates to the Exclude
List are made available on the Java Partner Engineering Web site.
You should always make sure you are using an up-to-date copy of
the Exclude List before running the Portlet TCK to verify your
implementation.

Portlet TCK—Getting Started

14 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

A test might be included in an Exclude List for reasons such as:

• An error in an underlying implementation API has been discovered, which
does not allow the test to execute properly.

• An error in the specification that was used as the basis of the test has been
discovered.

• An error in the test itself has been discovered.

• The test fails due to a bug in the tools (such as the JavaTest harness, for
example).

In addition, all tests are also tested against the Reference Implementation done as
an Apache Open Source Project, Pluto 1.0. Any tests that fail when run on a
reference Java platform are put on the Exclude List. Any test that is not
specification-based, or for which the specification is vague, may be excluded. Any
test that is found to be implementation dependent (based on a particular thread
scheduling model, based on a particular file system behavior, and so on) may be
excluded.

Portlet TCK—Getting Started
This section provides a general overview of what needs to be done to install, set up,
test, and use the Portlet TCK:

1. Make sure that the following software has been correctly installed:

❍ Sun Microsystems J2SE software version 1.3.1 or higher on the system
hosting the JavaTest harness.

❍ The implementation of Portlet 1.0 that is under test.

Consult the documentation for each of these software applications for
installation instructions.

NOTE Licensees are not permitted to alter or modify Exclude Lists.
Changes to an Exclude List can only be made by using the
procedure described in “Portlet Test Appeals Process” on page 21.

Portlet TCK—Getting Started

Chapter 1 Introduction 15

2. Install the Portlet TCK 1.0 software.

See Chapter 3, “Requirements” and Chapter 4, “Installation” for more
information.

Note that JavaTest, version 3.1.3 is bundled with the Portlet TCK and is
installed as a part of the Portlet TCK installation.

3. Configure the Portlet TCK.

See Chapter 5, “Setup and Confirguration for Vendor Implementation” or
Chapter 6, “Setup and Configuration for Reference Implementation” for more
information.

4. Run the tests.

See Chapter 7, “Running the Portlet TCK” for more information. See also
Chapter 8, “Reporting and Logging” and Chapter 9, “Debugging Test
Problems” as necessary.

Portlet TCK—Getting Started

16 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

17

Chapter 2

Procedure for Portlet 1.0 Certification

This chapter describes the compatibility testing procedure and compatibility
requirements for Java™ Portlet Technology Compatibility Kit (Portlet TCK),
version 1.0.

Certification Overview
• Install the appropriate version of the Technology Compatibility Kit (TCK) and

execute it in accordance with the instructions in this User’s Guide.

• Ensure that you meet the requirements outlined in “Compatibility
Requirements” below.

• Certify to Java Partner Engineering that you have finished testing and that you
meet all the compatibility requirements.

Compatibility Requirements

Definitions
These definitions are for use only with these compatibility requirements and are
not intended for any other purpose.

Compatibility Requirements

18 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Table 2-1 Definitions

Term Definition

Computational Resource A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at
a specific or minimum revision level so as to satisfy the requirements of
the Test Suite. Examples of computational resources that may vary in
quantity are RAM and file descriptors. Examples of computational
resources that may vary in existence (this is, may exist or not) are graphics
cards and device drivers. Examples of computational resources that may
vary in version are operating systems and device drivers.

Conformance Tests All tests in the Test Suite for an indicated Technology Under Test, as
distributed by the Maintenance Lead, excluding those tests on the Exclude
List for the Technology Under Test.

Container An implementation of the associated Libraries, as specified in the
Specifications, and a version of a J2SE Runtime Product, as specified in the
Specifications, or a later version of a J2SE Runtime Product that also meets
these compatibility requirements.

Documented Made technically accessible and made known to users, typically by means
such as marketing materials, product documentation, usage messages, or
developer support programs.

Exclude List The most current list of tests, distributed by the Maintenance Lead, that
are not required to be passed to certify conformance. The Maintenance
Lead may add to the Exclude List for that Test Suite as needed at any time,
in which case the updated Exclude List supplants any previous Exclude
Lists for that Test Suite.

Libraries The class libraries, as specified through the Java Community ProcessSM

(JCPSM), for the Technology Under Test.

The Libraries for Portlet 1.0 are listed at the end of this chapter.

Location Resource A location of classes or native libraries that are components of the test
tools or tests, such that these classes or libraries may be required to exist in
a certain location in order to satisfy the requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

Maintenance Lead The JCP member responsible for maintaining the Specification, reference
implementation, and TCK for the Technology. Sun Microsystems and IBM
are the Maintenance Leads for Portlet 1.0.

Compatibility Requirements

Chapter 2 Procedure for Portlet 1.0 Certification 19

Rules for Portlet Products
For each version of an operating system, software component, and hardware
platform Documented as supporting the Product:

Operating Mode Any Documented option of a Product that can be changed by a user in
order to modify the behavior of the Product.

For example, an Operating Mode of a Runtime can be binary
(enable/disable optimization), an enumeration (select from a list of
localizations), or a range (set the initial Runtime heap size).

Product A licensee product in which the Technology Under Test is implemented or
incorporated, and that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an Operating Mode.

For example, a Runtime supporting an Operating Mode that permits
selection of an initial heap size might have a Product Configuration that
sets the initial heap size to 1 Mb.

Resource A Computational Resource, a Location Resource, or a Security Resource.

Rules These definitions and rules in this Compatibility Requirements section of
this User’s Guide.

Runtime The Containers specified in the Specifications.

Security Resource A security privilege or policy necessary for the proper execution of the
Test Suite.

For example, the user executing the Test Suite will need the privilege to
access the files and network resources necessary for use of the Product.

Specifications The documents produced through the JCP that define a particular Version
of a Technology.

The Specifications for the Technology Under Test can be found later in this
chapter.

Technology Specifications and a reference implementation produced through the JCP.

Technology Under Test Specifications and the reference implementation for Portlet 1.0.

Test Suite The requirements, tests, and testing tools distributed by the Maintenance
Lead as applicable to a given Version of the Technology.

Version A release of the Technology, as produced through the JCP.

Table 2-1 Definitions (Continued)

Term Definition

Compatibility Requirements

20 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

PLT1. The Product must be able to satisfy all applicable compatibility requirements,
including passing all Conformance Tests, in every Product Configuration and
in every combination of Product Configurations, except only as specifically
exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize
performance, then that Product must satisfy all applicable compatibility
requirements for a Product in each Product Configuration, and combination of
Product Configurations, of those Operating Modes.

PLT1.1. If an Operating Mode controls a Resource necessary for the basic execution of
the Test Suite, testing may always use a Product Configuration of that
Operating Mode providing that Resource, even if other Product Configurations
do not provide that Resource. Notwithstanding such exceptions, each Product
must have at least one set of Product Configurations of such Operating Modes
that is able to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy
(i.e., Security Resource) which has one or more Product Configurations that
cause Conformance Tests to fail may be tested using a Product Configuration
that allows all Conformance Tests to pass.

PLT1.2. A Product Configuration of an Operating Mode that causes the Product to
report only version, usage, or diagnostic information is exempted from these
compatibility rules.

PLT2. Some Conformance Tests may have properties that may be changed. Properties
that can be changed are identified in the JavaTest Environment (.jte) files in
the bin directory of the Test Suite installation. Apart from changing such
properties and other allowed modifications described in this User’s Guide, no
source or binary code for a Conformance Test may be altered in any way
without prior written permission. Any such allowed alterations to the
Conformance Tests would be posted to the Java Partner Engineering web site
and apply to all licensees.

PLT3. The testing tools supplied as part of the Test Suite or as updated by the
Maintenance Lead must be used to certify compliance.

PLT4. The Exclude List associated with the Test Suite cannot be modified.

PLT5. The Maintenance Lead can define exceptions to these Rules. Such exceptions
would be made available to and apply to all licensees.

Portlet Test Appeals Process

Chapter 2 Procedure for Portlet 1.0 Certification 21

Portlet Test Appeals Process
Sun has a well established process for managing challenges to its Portlet 1.0 Test
Suite and plans to continue using a similar process in the future. Sun, as
Maintenance Lead, will authorize representatives from Sun's Java Partner
Engineering group to be the point of contact for all test challenges. Typically this
will be the engineer assigned to a company as part of its Portlet 1.0 TCK support.

Process Used to Manage Challenges to Portlet
1.0 Tests:
The following process will be used to manage challenges to Portlet 1.0 tests:

PLT6. All hardware and software component additions, deletions, and modifications
to a Documented supporting hardware/software platform, that are not part of
the Product but required for the Product to satisfy the compatibility
requirements, must be Documented and available to users of the Product.

For example, if a patch to a particular version of a supporting operating system
is required for the Product to pass the Conformance Tests, that patch must be
Documented and available to users of the Product.

PLT7. The Product must contain the full set of public and protected classes and
interfaces for all the Libraries. Those classes and interfaces must contain exactly
the set of public and protected methods, constructors, and fields defined in the
Specifications for those Libraries. No subsetting, supersetting, or modifications
of the public and protected API of the Libraries are allowed except only as
specifically exempted by these Rules.

PLT7.1. If a Product includes Technologies in addition to the Technology Under Test,
then it must contain the full set of combined public and protected classes and
interfaces. The API of the Product must contain the union of the included
Technologies. No further subsetting, supersetting, or modifications to the APIs
of the included Technologies are allowed.

PLT8. Except for tests specifically required by this TCK to be recompiled (if any), the
binary Conformance Tests supplied as part of the Test Suite or as updated by
the Maintenance Lead must be used to certify compliance.

PLT9. The functional programmatic behavior of any binary class or interface must be
that defined by the Specifications.

Portlet Test Appeals Process

22 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

1. Who can make challenges to the Portlet 1.0 tests?

Only licensees of the Portlet 1.0 TCK

2. What challenges to the Portlet 1.0 tests may be submitted?

Individual (or related) tests may be challenged for reasons such as:

❍ Test is buggy (i.e., program logic errors).

❍ Specification item covered by the test is ambiguous.

❍ Test does not match the specification.

❍ Test assumes unreasonable hardware and/or software requirements.

3. How are challenges submitted?

To the Sun Java Partner Engineering contact assigned by Sun to the licensee.
Appeals must be in writing as described in the Test Challenge form below.

4. How and by whom are challenges addressed?

Sun Java Partner Engineering coordinates the review and decisions made by
test development and specification development engineers. See the Portlet 1.0
TCK Test Appeals Steps below.

5. How are approved changes to the Portlet 1.0 tests managed?

All tests found to be invalid are placed on the Exclude List for that version of
the Portlet 1.0 TCK within 1 business day. The new Exclude List is published to
all Portlet 1.0 TCK licensees on the Java Partner Engineering web site. Sun, as
Maintenance Lead, has the option of creating an alternative test to address any
challenge. Alternative tests (and criteria for their use) will be placed on the Java
Partner Engineering web site. Note that passing an alternative test is deemed
equivalent with passing the original test.

Portlet TCK Test Appeals Steps
1. Portlet licensee writes a test challenge to the Maintenance Lead contesting the

validity of one or a related set of Portlet tests.

A detailed justification for why each test should be invalidated must be
included with the challenge as described by the Test Challenge form below.

Portlet Test Appeals Process

Chapter 2 Procedure for Portlet 1.0 Certification 23

2. The Maintenance Lead evaluates the challenge.

If the appeal is incomplete or unclear, it is returned to the submitting licensee
for correction. If all is in order, the Maintenance Lead will check with the test
developers to review the purpose and validity of the test before writing a
response. The Maintenance Lead will attempt to complete the response within
5 business days. If the challenge is similar to a previously rejected test
challenge (i.e., same test and justification), the Maintenance Lead will send the
previous response to the licensee.

3. The challenge and any supporting materials from test developers is sent to the
specification engineers for evaluation.

A decision of test validity or invalidity is normally made within 15 working
days of receipt of the challenge. All decisions will be documented with an
explanation of why test validity was maintained or rejected.

4. The licensee is informed of the decision and proceeds accordingly.

If the test challenge is approved and one or more tests are invalidated, the
Maintenance Lead places the tests on the Exclude List for that version of the
Portlet (effectively removing the test(s) from the Test Suite). All tests placed on
the Exclude List will have a bug report written to document the decision and
made available to all licensees through the bug reporting database on the Java
Partner Engineering web site. If the test is valid but difficult to pass due to
hardware or operating system limitations, the Maintenance Lead may choose
to provide an alternate test to use in place of the original test (all alternate tests
are made available to the licensee community).

5. If the test challenge is rejected, the licensee may choose to escalate the decision
to the Executive Committee (EC), however, it is expected that the licensee
would continue to work with the Maintenance Lead to resolve the issue and
only involve the EC as a last resort.

Code Example 2-1 Test Challenge Form

Test Challenger Name and Company
Specification Name(s) and Version(s)
Test Suite Name and Version
Exclude List Version
Test Name
Complaint (argument for why test is invalid)

Reference Implementation for Portlet 1.0

24 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Reference Implementation for Portlet 1.0
Designated Reference Implementation for compatibility testing of Portlet 1.0 is as
follows:

• Reference Implementation done as an Apache Open Source Project, Pluto 1.0

• Java™ 2 Platform, Standard Edition (J2SE™) Versions 1.3.1_02, 1.3.1_03, and
1.4

• Redhat Linux 7.2, Solaris™ Operating System V 8 and 9/SPARC, and
Microsoft Windows 2000 and XP.

Specifications for Portlet 1.0
The following web sites contain the Specifications for Java™ Portlet 1.0:

http://www.jcp.org/en/jsr/detail?id=168

Libraries for Portlet 1.0
The following packages constitute the required class libraries for Java™ Portlet 1.0:

• javax.portlet

Code Example 2-2 Test Challenge Response Form

Test Defender Name and Company
Test Defender Role in Defense (e.g., test developer, Maintenance
Lead, etc.)
Specification Name(s) and Version(s)
Test Suite Name and Version
Test Name
Defense (argument for why test is valid)
-can be iterative-
Implications of test invalidity (e.g., other affected tests and
test framework code, creation or exposure of ambiguities in spec
(due to unspecified requirements), invalidation of the reference
implementation, creation of serious holes in test suite)
Alternatives (e.g., are alternate test appropriate?)

25

Chapter 3

Requirements

This chapter lists the required hardware configurations and prerequisite software
that must be present before you can run the Java™ Portlet Technology
Compatibility Kit (Portlet TCK), version 1.0.

Hardware Requirements
You can run the Portlet TCK software on compatible Java™ platforms on both Sun
workstations and on personal computers. The following section lists the hardware
requirements for both the TCK and the reference implementation. Hardware
requirements for other implementations will vary.

All systems must meet the following recommended and minimum hardware
requirements:

• CPU running at 500 MHz minimum

• 512MB of RAM minimum

• 1024MB of swap space minimum

• 512 MB of free disk space minimum for writing data to log files

• Network access

Software Requirements
You can run the Portlet TCK software on Sun Solaris™ operating system, Linux,
and Windows XP/2000 platforms that meet the following minimum software
requirements:

• Operating Systems:

Software Requirements

26 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

❍ Sun Solaris V 8 and 9

❍ Microsoft Windows 2000 Professional or Microsoft Windows XP Pro

❍ Redhat Linux 7.1

• Java™ 2 Platform, Standard Edition (J2SE™) SDK: Version 1.3.1-02 or later

• Java™ 2 Platform, Enterprise Edition (J2EE™) SDK Version 1.3

• JSR 168 platform software, such as a vendor’s implementation

27

Chapter 4

Installation

This chapter explains how to install the Portlet TCK on a system running the Sun
Solaris™, Redhat Linux, or Microsoft Windows operating system.

Obtaining the Software
You can obtain the Portlet TCK, version 1.0 software from the Java Partner
Engineering web site (http://javapartner.sun.com) in the web site’s Download
Center area. The reference implementation Pluto 1.0 can be obtained from the
following URL:

http://jakarta.apache.org/pluto

Installing the Software
1. Install the Java™ 2 Platform, Standard Edition (J2SE™) 1.3.1 or higher

software.

Download the J2SE 1.3.1 or higher software from the Java Software web site
and install. See the installation instructions that accompany the software for
additional information.

2. Install a Portlet 1.0-compliant portlet container, such as the reference
implementation done as an Apache Open Source Project, Pluto 1.0.

See the installation instructions that accompany the software for additional
information.

Installing the Software

28 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

3. Download and install the Sun Microsystems J2EE SDK 1.3.1 software from the
Java software web site (http://java.sun.com/j2ee/sdk_1.3).

See the installation instructions that accompany the software for additional
information. This is needed only if you wish to recompile the TCK software for
debugging purposes.

4. Install the Portlet TCK, version 1.0 software.

Download the Portlet TCK software from the Java Partner Engineering web
site and install:

a. Copy or download the portlet-1_0-tck.zip file to the directory on your
local system where you will install the Portlet TCK.

You can obtain the Portlet TCK 1.0 software from the Java Partner
Engineering web site (http://javapartner.sun.com).

b. Change to the <install_directory> directory and use the unzip command to
extract the bundle:

cd <install_directory>
unzip portlet-1_0-tck.zip

NOTE The <install_directory>/portlettck directory will be TS_HOME.

29

Chapter 5

Setup and Confirguration for Vendor
Implementation

This chapter describes a generic Portlet TCK configuration to work with a vendor
implementation. See Chapter 6, “Setup and Configuration for Reference
Implementation” for information on running Portlet TCK on the reference
implementation done as an Apache Open Source Project, Pluto 1.0.

Allowed Modifications
You can modify the following test suite components only:

• Your implementation of the porting package

• The build.properties environment file

• The ts.jte environment file

Configure Your Test Environment
This section includes the following sections:

• Overview

• Configuring the Test Environment

Configure Your Test Environment

30 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Overview
This section provides an overview of the general procedure for configuring the
vendor implementation and the Portlet TCK. To get the TCK running on a vendor’s
implementation, install and bring up the vendor implementation and configure
and set up the Portlet TCK.

For TCK configuration, the steps are the same for the Sun Solaris™, Microsoft
Windows 2000/XP, and Linux operating systems. For detailed information on
these steps, see “Configuring the Test Environment” on page 31.

1. Setup a JSR 168 compliant implementation/server.

See “Setup a JSR 168 Compliant Implementation on a Server” on page 31 for
more information on modifications that must be made to the vendor’s server.

2. Setup the TCK environment variables.

See “Setting Up TCK Environment Variables” on page 31 for more details.

3. Setup the TCK TS_HOME/bin/build.properties file to match your test
environment.

See “Setting Up TCK Properties in build.properties” on page 31 for more
details.

4. Deploy TCK Portlet Web Applications on server under test.

Portlet TCK includes portlet web applications containing servlets, portlets, and
JSPs to be deployed on the implementation being tested. See “Deploying
Portlet Web Applications on the Server” on page 32 for more details.

5. Modify TCK TS_HOME/bin/ts.jte properties.

See “Setting Up TCK Properties in ts.jte” on page 32 for more details.

6. Optionally, set up a user-identity for any test requiring authentication.

See “Properties to Configure TCK for User Identification” on page 35 for more
information.

7. Optionally, set up HTTP headers that might be set by a vendor for every
request.

See “Setting Up Additional HTTP Headers” on page 37 for more information.

8. Run the TCK tests.

See Chapter 7, “Running the Portlet TCK” for information on Starting
JavaTest™ and running the tests.

Configure Your Test Environment

Chapter 5 Setup and Confirguration for Vendor Implementation 31

Configuring the Test Environment
This section provides detailed instructions for configuring your test environment.

Setup a JSR 168 Compliant Implementation on a Server
Set up a JSR 168 compliant implementation on a server such as the Reference
Implementation done as an Apache Open Source Project, Pluto 1.0.

Setting Up TCK Environment Variables
Set the following environment variables in your shell environment:

1. Set the JAVA_HOME variable to the directory where the Java™ 2 Platform,
Standard Edition (J2SE™) software has been installed.

2. Set the TS_HOME variable to the directory where the Portlet TCK software has
been installed.

3. Set the PATH variable to include the <TS_HOME>/bin directory.

For example, on UNIX using csh:

Or, on Windows:

Setting Up TCK Properties in build.properties
Set the following properties in the TS_HOME/bin/build.properties file:

1. Set the j2ee.home.ri property to the installation directory of the J2EE SDK
1.3.1 software.

rivendell% setenv JAVA_HOME=/usr/java1.3
rivendell% setenv TS_HOME /portlettck
rivendell% setenv PATH $TS_HOME/bin:$PATH

C:\> set JAVA_HOME=C:\java1.3
C:\> set TS_HOME=C:\portlettck
C:\> set PATH=%TS_HOME%\bin;%PATH%

Configure Your Test Environment

32 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

2. Set the harness.executeMode property to Mode 2 (Run Only) to indicate the
mode in which the JavaTest harness will run the tests.

Do not specify any other mode other than Mode 2.

3. Set the webapp.dir to a directory, where all TCK test portlet WAR files are
copied when tsant deploy.all command is run.

See “Deploying Portlet Web Applications on the Server” on page 32 for more
details on the deployment of the portlet WAR files.

4. Set portlet.classes property to include the JAR file that contains the Portlet
1.0 API (called portlet.jar if you are using Pluto 1.0.)

Deploying Portlet Web Applications on the Server
1. Configure the property webapp.dir in build.properties file.

Set the property to a location where the tsant command can copy all the web
applications that need to be deployed in the implementation under test.

The directory must exist before running this command. For example, type:

webapp.dir=/tmp/PortletTCKWebApps

2. Change to the TS_HOME/bin directory. For example, type:

cd <TS_HOME>/bin

3. Deploy the Portlet web applications in the location specified by webapp.dir

property. To deploy, type:

tsant deploy.all

4. Deploy all the web applications on the implementation under test using
vendor specific deployment tools or procedures.

5. Restart the server.

Restart the server only if your deployment tools or procedures require a server
restart.

Setting Up TCK Properties in ts.jte
Before running any of the Portlet TCK tests, you must specify certain information
that JavaTest needs to run the tests in your specific environment. This information
exists in the <TS_HOME>/bin/ts.jte environment file. This file contains sets of
name/value pairs that are used by the tests. You need to assign a valid value for
your environment for all of the properties listed in the following sections.

Configure Your Test Environment

Chapter 5 Setup and Confirguration for Vendor Implementation 33

Properties for Test Harness Setup
Make sure that the following properties, which are used by the test harness, have
been set in the ts.jte file:

Here:

• The harness.temp.directory property specifies a temporary directory that
the harness creates and to which the TCK harness and tests write temporary
files. The default setting need not be changed.

• The harness.log.port property specifies the port that server components of
the tests use to send logging output back to JavaTest. If the default port is not
available on the machine running JavaTest, you must edit this property and set
it to an available port. By default, this property is set to port 2000.

• The harness.log.traceflag property is used to turn on or turn off verbose
debugging output for the tests. The value of the property is set to false by
default. Set the property to true to turn debugging on.

Properties for Configuring TCK to Obtain URLs to Invoke Portlet
In TCK, every test is written as a set of one or more portlets. A test client is written
for each test. The test client must interact with a portal page containing the portlets
that are part of the test.

To accomplish this, TCK needs to obtain the initial URL for the portal page of each
test case. All the portlets in the portal page obtained with the initial URL must be in
VIEW Portlet mode and in NORMAL Window state. Subsequent requests to the
test are done using URLs generated by PortletURL that are part of the returned
portal pages. These subsequent requests must be treated as directed to same portal
page composed of the same portlets.

Since aggregation of portlets in a portal page and the URLs used to interact with
the portlets are vendor specific, TCK provides two alternative mechanisms in the
framework to get the URLs to portal pages for the test cases: declarative
configuration or programmatic configuration. A vendor must support at least one
of these mechanisms to run the conformance tests.

harness.temp.directory=${TS_HOME}
harness.log.port=2000
harness.log.traceflag=[true|false]

Configure Your Test Environment

34 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Declarative Configuration of the Portal Page for a TCK Test
TCK publishes an XML file in <TS_HOME>/bin/portletTCKTestCases.xml
containing the portlets for each test case. The portletTCKTestCases.xml file
contains the unique name of each test in the Portlet TCK. It also contains the
portlets participating in each test. It follows the rules specified in XML schema,
<TS_HOME>/bin/portletTCK_1_0.xsd. In this guide, the
portletTCKTestCases.xml file is referred to as the Master Test Cases file.

For the declarative configuration, vendors must refer to this file for establishing a
portal page for every test. Vendors must provide an XML file with a complete URL
for the portal page for each test. A call to this URL must generate a portal page with
the content of all the portlets defined for the corresponding test case. If redirected
to another URL, the new URL must use the same host name and port number as
specified in the original URL.

More information about this file is included in TCK Chapter of JSR 168
Specification. The file provided by the vendor would be validated against the XML
schema file <TS_HOME>/bin/portletTCKVendor_1_0.xsd. For reference, a sample
file, TS_HOME/bin/vendorTestsToURLMapping.xml, is included.

This configuration option must be specified in the ts.jte file using the following
two properties:

Here:

• portalURLFetcherMode - Set this property to 0.

• vendorTestsToURLMapping - Set this property to the full path name of the
vendor supplied file containing URLs for all test cases.

Programmatic Configuration of the Portal Page for a TCK Test
For programmatic configuration, a vendor must provide a full URL as a
configuration parameter to the TCK. The TCK will call this URL with a set of
parameters indicating the set of portlets that must appear in a portal page for the
given test.

Upon receiving this request, the vendor provided URL can dynamically create a
portal page with the required portlets. Calls to this vendor provided URL are
always HTTP GET requests.

portalURLFetcherMode=0
vendorTestsToURLMappingFile=/tmp/sunTestsToURLMapping.xml

Configure Your Test Environment

Chapter 5 Setup and Confirguration for Vendor Implementation 35

The parameter names on the URL are multiple occurrences of the portletName
parameter. Values of this parameter must be a string consisting of application
name and portlet name supported by a forward slash (/).

The response of this call must be a portal page with the required portlets or a
redirection to another URL where the portal page will be served. If redirected, the
new URL must use the same host and port number as the original URL.

More information on this option is available in TCK Chapter in the JSR168
Specification document.

This configuration option is specified in the ts.jte file using the following two
properties:

• portalURLFetcherMode - Set this property to 1.

• vendorPortalURL - Set this property to the URL to be used by TCK.

Properties to Configure TCK for User Identification
Some of the Portlet TCK tests may require an authenticated user. A portal vendor
may indicate that certain additional test cases, not required by TCK, to be executed
in the context of an authenticated user. This is useful for vendor implementations
that require an authenticated user for certain functionality to work. A vendor can
specify the names of these test cases in a configuration file,
TS_HOME/bin/authTestList.txt. TCK will consult this file to decide if user
authentication is needed for a test case.

Authentication can be enabled by setting the authConfigType property to a value
of 1 or 2 in ts.jte file. Unique names of the test can be found in the
portletTCKTestCases.xml file. This file is consulted only if authentication is
enabled.

Portlet TCK provides two mechanisms to set up user authentication and send the
user credentials:

• HTTP Basic authentication

• Java interface provided by the TCK

portalURLFetcherMode=1
vendorPortalURL=http://hostname.domain:port/portal/tckServlet

Configure Your Test Environment

36 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

If the TCK framework requires no authentication, the authConfigType property
can be set to 0. A value of 0 implies that no authentication is needed for any test.
For example:

If the TCK framework is configured to use HTTP Basic authentication mechanism,
an Authorization HTTP header, using the configured user and password values,
is constructed and sent with each test case request. This configuration option is
specified in the ts.jte file in the authConfigType property.

To enable HTTP Basic authentication, set the authConfigType property to a value
of 1. If authConfigType property is set to a value of 1, also set the authuser and
authpassword properties with the user name and password. The authuser and
authpassword properties need to be set only if authConfigType property is set to
a value of 1 or 2.

If TCK framework is configured to use the Java interface mechanism, the value
obtained from the specified interface implementation will be sent as a Cookie
HTTP header with request of the test case.

This configuration option is specified in the ts.jte file in the authConfigType
property. To enable authentication via the Java interface, set the authConfigType
property to a value of 2. If authConfigType property is set to a value of 2, set the
authuser, authpassword properties.

The TS_HOME/src/com/sun/ts/lib/porting directory contains the interfaces. In
this directory, we have TSPortletAuthCookie interface. Set
porting.ts.portletAuthCookie.class to com.vendor (for example,
porting.ts.portletAuthCookie.class=com.vendor)

Set the porting.ts.portletAuthCookie.class property to the vendor
implementation of TSPortletAuthCookie interface. Append the classpath to this
implementation in the local.classes property in the build.properties file. For
example:

authConfigType=0

authConfigType=1
authuser=username
authpassword=password

Where to Go Next?

Chapter 5 Setup and Confirguration for Vendor Implementation 37

Javadoc for this interface can be found in the TS_HOME/docs/api directory.

Setting Up Additional HTTP Headers
Vendors can set up HTTP headers in the bin/headerlist.properties file. These
headers are sent out in every request that goes out to the server. The syntax in the
file should follow the java Properties. TCK framework writes some of the headers,
such as Host, User-Agent. Any such headers specified in this file will be
overwritten by the framework.

Do not specify any cookie headers in header file.

Optional Policy Setting
The TS_HOME/bin/server_policy.append file contains the grant statement used
by the test harness, signature tests, and portlet tests. Append this file to the Java
policy files on your portlet container.

Where to Go Next?
This completes the configuration of the Portlet TCK for a vendor implementation.
In order to configure the Portlet TCK for Pluto 1.0, see Chapter 6, “Setup and
Configuration for Reference Implementation.” Otherwise, proceed to Chapter 7,
“Running the Portlet TCK” for instructions on running the Portlet TCK against
your implementation.

authConfigType=2
authuser=username
authpassword=password
porting.ts.portletAuthCookie.class=com.vendor.MYTSAuthCookieImpleme
ntation

Where to Go Next?

38 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

39

Chapter 6

Setup and Configuration for
Reference Implementation

This chapter describes a generic Portlet TCK configuration to work with Apache
Open Source Project, Pluto 1.0. See Chapter 5, “Setup and Confirguration for
Vendor Implementation” for information on running Portlet TCK on a vendor
implementation.

Allowed Modifications
You can modify the following test suite components only:

• Your implementation of the porting package

• The build.properties environment file

• The ts.jte environment file

Configure Your Test Environment
This section includes the following sections:

• Overview

• Configuring the Test Environment

Configure Your Test Environment

40 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Overview
This section provides an overview of the general procedure for configuring the
reference implementation and the Portlet TCK. To get the TCK running on Pluto
1.0, install and bring up Pluto 1.0 and configure and set up the Portlet TCK.

For TCK configuration, the steps are same for the Sun Solaris™, Microsoft
Windows 2000/XP, and Linux operating systems. For detailed information on
these steps, see “Configuring the Test Environment” on page 40.

1. Set up a Pluto 1.0.

See “Setup Pluto 1.0” on page 40 for more information on modifications that
must be made to the Pluto 1.0.

2. Setup the TCK environment variables.

See “Setting Up TCK Environment Variables” on page 41 for more details.

3. Setup the TCK <TSHOME>/bin/build.properties file to match your test
environment.

See “Setting Up TCK Properties in build.properties” on page 41 for more
details.

4. Deploy TCK Portlet Web Applications on server under test.

Portlet TCK includes portlet web applications containing servlets, portlets, and
JSPs to be deployed on the implementation being tested. See “Deploying
Portlet Web Applications on Pluto 1.0” on page 41 for more details.

5. Modify TCK <TSHOME>/bin/ts.jte properties.

See “Setting Up TCK Properties in ts.jte” on page 42 for more details.

6. Run the TCK tests.

See Chapter 7, “Running the Portlet TCK”” for information on Starting
JavaTest™ and running the tests.

Configuring the Test Environment
This section provides detailed instructions for configuring your test environment.

Setup Pluto 1.0
Set up the JSR 168 compliant Pluto 1.0 according to the Pluto 1.0 reference
implementation documentation.

Configure Your Test Environment

Chapter 6 Setup and Configuration for Reference Implementation 41

Setting Up TCK Environment Variables
Set the following environment variables in your shell environment:

1. Set the JAVA_HOME variable to the directory where the Java™ 2 Platform,
Standard Edition (J2SE™) software has been installed.

2. Set the TS_HOME variable to the directory where the Portlet TCK software has
been installed.

3. Set the PATH variable to include the <TS_HOME>/bin directory.

For example, on UNIX using csh:

Or, on Windows:

Setting Up TCK Properties in build.properties
Set the following properties in the <TS_HOME>/bin/build.properties file:

1. Set the j2ee.home.ri property to the installation directory of the J2EE SDK
1.3.1 software.

2. Set the webapp.dir to a directory, where all TCK test portlet wars are copied
when tsant deploy.all command is run.

See “Deploying Portlet Web Applications on Pluto 1.0” on page 41 for more
details on the deployment of the portlet WAR files.

Deploying Portlet Web Applications on Pluto 1.0
1. Set webapp.dir in TS_HOME/bin/build.properties to

PLUTO_HOME/portlets where PLUTO_HOME is the directory where Pluto 1.0
is installed.

rivendell% setenv JAVA_HOME=/usr/java1.3
rivendell% setenv TS_HOME /portlettck
rivendell% setenv PATH $TS_HOME/bin:$PATH

C:\> set JAVA_HOME=C:\java1.3
C:\> set TS_HOME=C:\portlettck
C:\> set PATH=%TS_HOME%\bin;%PATH%

Configure Your Test Environment

42 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

2. Change to TS_HOME/bin directory and type the following command to copy
all the TCK portlet WAR files to the location specified in webapp.dir:

tsant deploy.all

3. Change to the PLUTO_HOME/build directory and type the following
command:

build.bat deploy_portlets

4. Restart Pluto 1.0.

5. Ensure that portlets are deployed correctly. To ensure, type the following URL
in a browser:

http://hostname:8080/pluto/tck?portletName=portlet_jp_RenderReque
st_web/GetAttribute

Setting Up TCK Properties in ts.jte
The Pluto 1.0 uses programmatic configuration of the portal page for a TCK test. Its
mechanism is defined in detail in “Programmatic Configuration of the Portal Page
for a TCK Test” on page 34. For Pluto 1.0, ts.jte is configured with default setup
needed to run TCK on Pluto 1.0.

• portalURLFetcherMode - Set this property to 1.

• vendorPortalURL - Set this property to the URL to be used by TCK.

portalURLFetcherMode=1
vendorPortalURL=http://localhost:8080/pluto/tck

43

Chapter 7

Running the Portlet TCK

The Portlet Compatibility Test Suite uses the JavaTest™ harness to execute the tests
in the test suite. For detailed instructions that explain how to run and use JavaTest,
see the JavaTest User’s Guide and Reference in the documentation bundle.

Before starting the JavaTest, ensure that you have completed the steps outlined in
Step 1 through Step 5 on page 44 for a vendor implementation or Step 1 through
Step 5 on page 44 for Pluto 1.0.

Starting JavaTest
There are two general ways to run the Portlet test using the JavaTest harness
software:

• Through the JavaTest GUI

• From the command line in your shell environment

Running the JavaTest harness from JavaTest GUI is recommended for initial
configuration procedures, for validating your configuration, for selecting tests to
run, and for general ease-of-use when running tests and viewing test reports.

Running the JavaTest harness from the command line is useful in headless server
configurations, and for running tests in batch mode.

NOTE For consistent results, reset any vendor specific persistent state
before running the Portlet TCK. Also restart your portlet container.

Starting JavaTest

44 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

➤ To Start the JavaTest in GUI Mode

1. Set TS_HOME to the directory where Portlet TCK was installed.

2. Change directory to TS_HOME/bin.

3. Execute the tsant gui target to start the JavaTest GUI:

<TS_HOME>/bin/tsant gui

4. Select Create Work Directory in the Welcome screen.

5. Specify the directory to which the JavaTest test harness will write temporary
files (for example, /tmp/JTwork) and select Next Work Dir.

For debugging purposes, after running the test, look at the files created in this
directory for each test case.

6. Select Configuration from the pull-down list and select Edit Configuration.

The Welcome screen is displayed.

7. Select Next Question button from the Welcome screen.

8. Accept the default location of the environment files and select Next Question.

9. Specify your test environment and select Next Question.

Your test environment must be ts_unix or ts_win32. That is:

❍ Select the ts_unix option for the Solaris or Linux platform.

❍ Select the ts_win32 option for the Microsoft Windows XP or Windows
2000 Professional platform.

10. Accept the default set of tests to run and select Next Question.

11. Agree to the default exclude list and select Next Question.

12. Verify the default location of the exclude list and select Next Question.

13. Specify where you wish to save this configuration information.

14. Select Finished in the Congratulations screen.

NOTE The tsant command referenced in this guide is a wrapper around
the Ant build tool, which is included in the TCK bundle. The
build.xml file in TS_HOME/bin contains the various Ant targets for
the TCK test suite.

Starting JavaTest

Chapter 7 Running the Portlet TCK 45

15. Select Run and then select Start.

The tests will be executed.

➤ To Start JavaTest in Command-Line Mode

1. Set <TS_HOME> to the directory in which Portlet TCK was installed.

2. Change to any subdirectory under <TS_HOME>/src/com/sun/ts/tests.

3. Execute the tsant runclient target to start the JavaTest run:

<TS_HOME>/bin/tsant runclient

4. To run a single test directory, type:

5. To run a single test within a test directory, type:

This command will only run the GetAttributeTest in the RenderRequest test
directory. Select the test name to run by looking at the testName tags in the
URLClient.java file.

If the test is in SpecURLClient.java, specify the following additional
parameter:

-Dtest.client=SpecURLClient.java

6. To run a subset of test directories, type:

NOTE You will lose all your default settings if you run the Parameter
Editor before running the Configuration Editor.

cd
<TS_HOME>/src/com/sun/ts/tests/portlet/api/javax_portlet/Portlet
Session
tsant runclient

cd
<TS_HOME>/src/com/sun/ts/tests/portlet/api/javax_portlet/RenderR
equest
tsant runclient -Dtest=GetAttributeTest

Starting JavaTest

46 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

This command will run all the test directories under the api directory.

cd <TS_HOME>/src/com/sun/ts/tests/portlet/api
tsant runclient

47

Chapter 8

Reporting and Logging

This chapter describes how to use the JavaTest™ Graphical User Interface (GUI) to
access detailed configuration, output, and result information for the tests that were
executed during the test run.

Using the JavaTest GUI to Configure and Save a
Report

Use the following procedure to use the JavaTest GUI to configure and save a report
for a specific test area:

1. Start the JavaTest GUI:

cd TS_HOME/bin tsant gui

tsant gui

2. Configure the test area that will be tested.

a. Using the configure pull-down menu, select Edit Configuration.

b. A window will pop up with a message stating that a work directory is
required. Select Create Work Directory, unless you already configured a
work directory. Then select Open Work Directory.

c. The Configuration Editor window will be displayed.

3. Use the Configuration Editor to set up the test harness:

a. The Welcome screen displays. Press Next.

b. Specify your Environment File. By default TS_HOME/bin/ts.jte is
selected. Press Next.

c. Specify your Test Environment. Select ts_unix or ts_win32. Select Next.

Using the JavaTest GUI to Configure and Save a Report

48 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

d. Specify which test to run, then select Yes. Press Next.

e. Go down the through the folders in the tree structure and locate the
<TS_HOME>/com/sun/ts/tests directory. Highlight the folder of the test
area you want to run (appclient, for example). You can specify a single test
as well by going further down the directory tree. Press Next.

f. Specify an Exclude List. Select Yes. Select Next.

g. Select the exclude list to use. Leave the default (initial). Select Next.

h. The Congratulations screen is displayed. Select Done.

i. The Save File screen is displayed. Save your configuration.

4. Run the test area (appclient, for example). Use the Run Test pull-down menu
and select Start.

5. Once the test(s) have finished running, you can save the test results to a file:

a. Use the Report pull-down menu and select New Report.

b. Enter the directory name in the Directory field (appclient_results, for
example).

c. Leave the Filter selection on Correct Configuration.

d. You can view the Report, which is in HTML format, through a Browser or
through the JavaTest GUI.

49

Chapter 9

Debugging Test Problems

For final certification and branding, all tests must be run through the JavaTest™
test harness. There are a number of reasons that tests can fail to execute properly.
This chapter provides some approaches for dealing with these failures.

You can execute different tsant targets during your build and debug cycle.

Using tsant
The following sections will address how to use tsant with the following targets to
rebuild, list, and run tests:

• runclient

• clean

• build

• ld, lld, lc, llc

You need to set TS_HOME and JAVA_HOME before using tsant. And unless tsant
is in your path, you’ll need to use the following command to execute tsant:

$TS_HOME/bin/tsant target

To see all of the targets you can use, look at the TS_HOME/bin/build.xml file.

NOTE Licensees can only run the Sun-built version of the tests for
certification.

Using tsant

50 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Running Tests without JavaTest
You can use the runclient target to run tests outside the JavaTest harness during
the debugging process. That is, you need to execute the following command to run
the tests without running the JavaTest GUI:

tsant -v runclient

If you include the -v switch, you will see additional information that should help
you debug test failures.

To run the PORTLET TCK tests using tsant, complete the following steps:

To run a single test directory:
1. Go to the directory where you want to run the tests. For example:

cd
TS_HOME/src/com/sun/ts/tests/portlet/api/javax_portlet/RenderRe
quest

2. Type tsant runclient.

This will run all tests in the RenderRequest test directory.

To run a single test within a test directory, type the following:
1. Go to the directory where you want to run the tests. For example:

cd
TS_HOME/src/com/sun/ts/tests/jaxrpc/api/javax_portlet/RenderReq
uest

2. Type tsant runclient -Dtest=GetAttributeTest

This will run only the GetAttributeTest in the RenderRequest test directory.
You select the test name to run by looking at the testName tags in the
URLClient.java file. If the test is in SpecURLClient.java, you would need to
give an addtional paramter -Dtest.client=SpecURLClient.java

To run a subset of test directories type the following:
1. Go to the directory where you want to run the tests. For example:

cd TS_HOME/src/com/sun/ts/tests/portlet/api

2. Type tsant runclient

This will run all the test directories under the api directory.

Using tsant

Chapter 9 Debugging Test Problems 51

Additionally, the harness.log.traceflag property is used to turn on or turn off
verbose debugging output for the tests. The value of the property is set to false by
default. Set the property to true to turn debugging on.

Note that you must run the tests through the JavaTest harness for final
certification.

Cleaning and Rebuilding Test Areas
You can use the clean and build targets to clean and rebuild selected test areas
during the debugging process. That is, you need to execute the following
command to clean test areas before rebuilding:

tsant clean

Then, to rebuild, execute the following command:

tsant build

Before cleaning and rebuilding, go to the directory that you want to rebuild.

When you are debugging test failures, you may find it helpful to modify tests. If
you modify the tests, you must rebuild them before rerunning the tests. Note that
you can only run the Sun-built version of the tests for final certification.

Listing the Contents of dist/classes Directories
You can use the ld, lld, lc, and llc targets to list the contents of corresponding
dist/classes directories from the src directory without leaving the src
directory. All listings are sorted by modification time, with the most recent
modification listed first. Output is redirected to more. The format may vary on
Windows and Unix. tsant does not support changing directory into the
dist/classes directories, but you can copy and paste the first line of the output,
which is the target path.

The list targets are as follows:

• tsant ld lists the contents of the dist directory

• tsant lld provides a long list of the contents of the dist directory

• tsant lc lists the contents of the classes directory

• tsant llc provides a long list of the contents of the classes directory

Test Tree

52 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

If you run these targets in a directory that is not under the src directory, they will
list the contents of the current directory. Note that you should not combine targets
when using ld, lld, lc, or llc targets.

Test Tree
Use the test tree to identify specific folders and tests that had errors or failing
results. Color codes are used to indicate status as follows:

• Green—Passed

• Blue—Test Error

• Red—Failed to pass test

• White—Test not run

• Gray—Test filtered out (not run)

When you click a folder icon in the test tree, the JavaTest harness displays its folder
view in the Test Manager information area. The information in the folder view is
changed by the view filter. Refer to the JavaTest User’s Guide or the JavaTest online
help for a detailed description of the test tree.

Folder Information
Click a folder icon in the test tree to display its information in the information pane.
The folder view displays a Summary tab, five status tabs, and a status display.

During a test run, you can use the folder view to monitor the status of a folder and
its tests. You can also use the folder view during troubleshooting to quickly locate
and open individual tests that had errors or failed during the test run.

The Summary tab displays the number of tests by their test results in a folder. In
addition to Summary information, the folder view contains five status tabs that
group and list the tests by their results. Choose the Error and the Failed panes to
view the lists of all tests in and under a folder that were not successfully run. You
can double-click a test in the lists to view its test information.

The status display at the bottom of the pane displays messages about the selected
tab. The messages may indicate that tests in the folder are loading or may provide
detailed status information about a selected test.

Test Information

Chapter 9 Debugging Test Problems 53

Refer to the JavaTest User’s Guide or the JavaTest online help for a detailed
description of the folder view.

Test Information
To display information about a test, click its icon in the test tree or double-click its
name in a folder status pane. The tabbed pane contains detailed information about
the test run and, at the bottom of the pane, a brief status message identifying the
type of failure or error. This message may be sufficient for you to identify the cause
of the error or failure.

If you need more information to identify the cause of the error or failure, use the
following panes listed in order of importance:

Test Run Messages contains a Message list and a Message pane that display the
messages produced during the test run.

Test Run Details contains a two column table of name/value pairs recorded when
the test was run.

Configuration contains a two column table of the test environment name/value
pairs derived from the configuration data actually used to run the test.

The Test Description tab displays the name/value pairs contained in the test
description. The values specified in the test description fields are used by the
JavaTest harness when the tests are run.

The Files tab contains a drop down list of source files from the test description. You
can display the contents of a file by clicking its name in the list. XML documents
(*.xml files) used by the test are not initially in the list because they are not the
sources of the test but its input data. To view an XML document, click the
appropriate reference when you browse the HTML file with the test description.

Report Files
Report files are another good source of troubleshooting information. The JavaTest
harness does not automatically generate reports at the end of a test run, but can
easily be configured to do so. Refer to Chapter 8, “Reporting and Logging” for
information about generating test reports.

Configuration Failures

54 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Configuration Failures
Configuration failures are more difficult to correct. They are easily recognized
because many tests fail the same way. When all of your tests begin to fail, you may
want to stop the run immediately and start viewing individual test output.
However, in the case of full-scale launch problems when tests are not run,
individual test output is not available. Other places to look for errors include:

Check your .jti file settings in the Configuration Editor. You may have launched
the JavaTest harness with “prior status” set to “any” instead of “ignore.”

Although you may not produce an env.html report file, the JavaTest GUI provides
the ability to view evaluated variables used by the tests. Choose Configure>Show
Test Environment from the Test manager menu bar to view the contents of the test
environment.

The Configuration Editor generates a configuration Question Log when you
complete a configuration interview. You can use the configuration Question Log to
review all of the questions and your answers in the current configuration. Choose
Configure>Show Question Log from the Test Manager menu bar to view the
current configuration interview.

Test Manager Properties
You can view the properties of a test manager by choosing View>Properties from
the Test Manager menu bar. The Test Manager Properties dialog box contains Test
Suite, Work Directory, Configuration, and Plug-Ins information.

Refer to the JavaTest User’s Guide or the JavaTest online help for a detailed
description of the Test Manager Properties dialog box.

Test Suite Errors
If the JavaTest harness detects test suite errors, it displays an advisory dialog box.
You can view detailed information about the test suite errors by choosing
View>Test Suite Errors from the Test Manager menu bar.

Refer to the JavaTest User’s Guide or the JavaTest online help for a detailed
description of the Test Manager: Test Suite Errors dialog box.

How Tests are Executed

Chapter 9 Debugging Test Problems 55

How Tests are Executed
To better understand and debug the test failures, this section describes how the
tests are selected for a test run and how they are then executed.

Test execution results are reported as one of the three states:

• Pass – A test passes when the functionality being tested behaves as expected.
All tests are expected to pass.

• Fail – A test fails when the functionality being tested does not behave as
expected.

• Error – A test is considered to be in error when something (usually a
configuration problem) keeps the test from being executed as expected. Errors
often indicate a systematic problem—a single configuration problem can cause
many tests to fail. For example, if the path to the Java runtime is configured
incorrectly, no tests can run and all will be in error.

How Tests are Selected for a Test Run
Immediately prior to the start of a test run, the JavaTest harness selects tests for the
run based on the following factors:

• Tests to be Run – The JavaTest harness finds tests listed in the “Tests to be
Run” field of the JavaTest Configuration. You can specify sub-branches of the
tree as a way of limiting which tests are executed during a test run. The
JavaTest harness walks the tree starting with the sub-branches or tests you
specify and executes all tests that it finds.

• Exclude List – Tests listed in the appropriate exclude list are “deselected” prior
to the start of a test run. For details about exclude lists and their role in the
certification process, see Chapter 2, “Procedure for Portlet 1.0 Certification.”

• Prior Status – Use the combo box and check boxes to select tests in a test run
based on their outcome on a prior test run. Prior status is evaluated on a
test-by-test basis using information stored in result files (.jtr) written in the
work directory.

How Tests are Executed

56 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

57

Chapter 10

Troubleshooting

This chapter explains how to debug test failures that you could encounter as you
run the Portlet Compatibility Test Suite.

Common CTS Problems and Resolutions
This section lists common problems that you may encounter as you run the Portlet
Compatibility Test Suite software on the J2EE SDK. It also proposes resolutions for
the problems, where applicable.

Problem The following exception may occur when a Portlet TCK test tries to
write a very long tracelog:

java.lang.StringIndexOutOfBoundsException: String index out of
range:
-13493
at java.lang.String.substring(String.java:1525)
at java.lang.String.substring(String.java:1492)
at javasoft.sqe.javatest.TestResult$Section
$WritableOutputBuffer.write(TestResult.java:650)
at java.io.Writer.write(Writer.java:153)
at java.io.PrintWriter.write(PrintWriter.java:213)
at java.io.PrintWriter.write(PrintWriter.java:229)
at java.io.PrintWriter.print(PrintWriter.java:360)
at java.io.PrintWriter.println(PrintWriter.java:497)
at javasoft.sqe.javatest.lib.ProcessCommand
$StreamCopier.run(ProcessCommand.java:331)

Support

58 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

Resolution Set the -Djavatest.maxOutputSize=nnn system parameter in the
TS_HOME/bin/ts.jte file to a value that is higher than the default setting of
100,000 on the JavaTest VM.

Support
If, after completing the troubleshooting process explained in this chapter, you still
cannot resolve your test problems, please contact the Java Partner Engineering
representative that has been assigned to your account.

59

Appendix A

Frequently Asked Questions

Q: Where do I start to debug a test failure?
A: From the JavaTest GUI, you can view recently run tests using the Test Results
Summary, by selecting the red Failed tab or the blue Error tab. See Chapter 9,
“Debugging Test Problems” for more information.

Q: How do I restart a crashed test run?
A: If you need to restart a test run, you can figure out which test crashed the test
suite by looking at the harness.trace file. The harness.trace file is in the report
directory that you supplied to the JavaTest GUI or parameter file. Examine this
trace file, then change the JavaTest GUI initial files to that location or to a directory
location below that file, and restart. This will overwrite only .jtr files that you
rerun. As long as you do not change the value of the GUI work directory, you can
continue testing and then later compile a complete report to include results from
all such partial runs.

Q: Why are there so many tests in the Exclude List?
A: The JavaTest exclude file (*.jtx) contains all tests that are not required by Sun
Microsystems to be run. The following is a list of reasons for a test to be included in
the Exclude List:

• An error in Pluto 1.0 that does not allow the test to execute properly has been
discovered.

• An error in the specification that was used as the basis of the test has been
discovered.

• An error in the test has been discovered.

60 JavaTM Portlet Technology Compatibility Kit 1.0 • User’s Guide • October 2003

	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Typographic Conventions Used in This Book
	Introduction
	Compatibility Testing
	Why Compatibility Testing is Important
	TCK Compatibility Rules
	TCK Overview
	Java Community Process (JCP) Program and Compatibility Testing

	The Portlet TCK
	Portlet TCK Specifications and Requirements
	Portlet TCK Components
	JavaTest Harness
	TCK Compatibility Test Suite
	Exclude Lists

	Portlet TCK—Getting Started

	Procedure for Portlet 1.0 Certification
	Certification Overview
	Compatibility Requirements
	Definitions
	Rules for Portlet Products

	Portlet Test Appeals Process
	Process Used to Manage Challenges to Portlet 1.0 Tests:
	Portlet TCK Test Appeals Steps

	Reference Implementation for Portlet 1.0
	Specifications for Portlet 1.0
	Libraries for Portlet 1.0

	Requirements
	Hardware Requirements
	Software Requirements

	Installation
	Obtaining the Software
	Installing the Software

	Setup and Confirguration for Vendor Implementation
	Allowed Modifications
	Configure Your Test Environment
	Overview
	Configuring the Test Environment

	Where to Go Next?

	Setup and Configuration for Reference Implementation
	Allowed Modifications
	Configure Your Test Environment
	Overview
	Configuring the Test Environment

	Running the Portlet TCK
	Starting JavaTest
	To Start the JavaTest in GUI Mode
	To Start JavaTest in Command-Line Mode

	Reporting and Logging
	Using the JavaTest GUI to Configure and Save a Report

	Debugging Test Problems
	Using tsant
	Running Tests without JavaTest
	Cleaning and Rebuilding Test Areas
	Listing the Contents of dist/classes Directories

	Test Tree
	Folder Information
	Test Information
	Report Files
	Configuration Failures
	Test Manager Properties
	Test Suite Errors
	How Tests are Executed
	How Tests are Selected for a Test Run

	Troubleshooting
	Common CTS Problems and Resolutions
	Support

	Frequently Asked Questions

